3.57 \(\int \sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2 \, dx\)

Optimal. Leaf size=288 \[ -\frac {\sqrt {e} \left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d}+\frac {\sqrt {e} \left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d}+\frac {\sqrt {e} \left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}-\frac {\sqrt {e} \left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d}-\frac {4 a b \sqrt {e \cot (c+d x)}}{d}-\frac {2 b^2 (e \cot (c+d x))^{3/2}}{3 d e} \]

[Out]

-2/3*b^2*(e*cot(d*x+c))^(3/2)/d/e+1/2*(a^2-2*a*b-b^2)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/d
*2^(1/2)-1/2*(a^2-2*a*b-b^2)*arctan(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/d*2^(1/2)-1/4*(a^2+2*a*b-b
^2)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))*e^(1/2)/d*2^(1/2)+1/4*(a^2+2*a*b-b^2)*ln(e^(1/
2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))*e^(1/2)/d*2^(1/2)-4*a*b*(e*cot(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 288, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3543, 3528, 3534, 1168, 1162, 617, 204, 1165, 628} \[ -\frac {\sqrt {e} \left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d}+\frac {\sqrt {e} \left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d}+\frac {\sqrt {e} \left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}-\frac {\sqrt {e} \left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d}-\frac {4 a b \sqrt {e \cot (c+d x)}}{d}-\frac {2 b^2 (e \cot (c+d x))^{3/2}}{3 d e} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])^2,x]

[Out]

((a^2 - 2*a*b - b^2)*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d) - ((a^2 - 2*a*b -
 b^2)*Sqrt[e]*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d) - (4*a*b*Sqrt[e*Cot[c + d*x]])/d
 - (2*b^2*(e*Cot[c + d*x])^(3/2))/(3*d*e) - ((a^2 + 2*a*b - b^2)*Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] -
Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*d) + ((a^2 + 2*a*b - b^2)*Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x]
 + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*d)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3543

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(d^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e
 + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1] &&  !(EqQ[m, 2] && EqQ
[a, 0])

Rubi steps

\begin {align*} \int \sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2 \, dx &=-\frac {2 b^2 (e \cot (c+d x))^{3/2}}{3 d e}+\int \sqrt {e \cot (c+d x)} \left (a^2-b^2+2 a b \cot (c+d x)\right ) \, dx\\ &=-\frac {4 a b \sqrt {e \cot (c+d x)}}{d}-\frac {2 b^2 (e \cot (c+d x))^{3/2}}{3 d e}+\int \frac {-2 a b e+\left (a^2-b^2\right ) e \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx\\ &=-\frac {4 a b \sqrt {e \cot (c+d x)}}{d}-\frac {2 b^2 (e \cot (c+d x))^{3/2}}{3 d e}+\frac {2 \operatorname {Subst}\left (\int \frac {2 a b e^2-\left (a^2-b^2\right ) e x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d}\\ &=-\frac {4 a b \sqrt {e \cot (c+d x)}}{d}-\frac {2 b^2 (e \cot (c+d x))^{3/2}}{3 d e}-\frac {\left (\left (a^2-2 a b-b^2\right ) e\right ) \operatorname {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d}+\frac {\left (\left (a^2+2 a b-b^2\right ) e\right ) \operatorname {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d}\\ &=-\frac {4 a b \sqrt {e \cot (c+d x)}}{d}-\frac {2 b^2 (e \cot (c+d x))^{3/2}}{3 d e}-\frac {\left (\left (a^2+2 a b-b^2\right ) \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\left (\left (a^2+2 a b-b^2\right ) \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\left (\left (a^2-2 a b-b^2\right ) e\right ) \operatorname {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 d}-\frac {\left (\left (a^2-2 a b-b^2\right ) e\right ) \operatorname {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 d}\\ &=-\frac {4 a b \sqrt {e \cot (c+d x)}}{d}-\frac {2 b^2 (e \cot (c+d x))^{3/2}}{3 d e}-\frac {\left (a^2+2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\left (\left (a^2-2 a b-b^2\right ) \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}+\frac {\left (\left (a^2-2 a b-b^2\right ) \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}\\ &=\frac {\left (a^2-2 a b-b^2\right ) \sqrt {e} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \sqrt {e} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}-\frac {4 a b \sqrt {e \cot (c+d x)}}{d}-\frac {2 b^2 (e \cot (c+d x))^{3/2}}{3 d e}-\frac {\left (a^2+2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.57, size = 220, normalized size = 0.76 \[ -\frac {\sqrt {e \cot (c+d x)} \left (4 \left (a^2-b^2\right ) \cot ^{\frac {3}{2}}(c+d x) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\cot ^2(c+d x)\right )+b \left (24 a \sqrt {\cot (c+d x)}+3 \sqrt {2} a \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )-3 \sqrt {2} a \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )+6 \sqrt {2} a \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-6 \sqrt {2} a \tan ^{-1}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )+4 b \cot ^{\frac {3}{2}}(c+d x)\right )\right )}{6 d \sqrt {\cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])^2,x]

[Out]

-1/6*(Sqrt[e*Cot[c + d*x]]*(4*(a^2 - b^2)*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2] +
 b*(6*Sqrt[2]*a*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 6*Sqrt[2]*a*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] +
24*a*Sqrt[Cot[c + d*x]] + 4*b*Cot[c + d*x]^(3/2) + 3*Sqrt[2]*a*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*
x]] - 3*Sqrt[2]*a*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])))/(d*Sqrt[Cot[c + d*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)*(a+b*cot(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \cot \left (d x + c\right ) + a\right )}^{2} \sqrt {e \cot \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)*(a+b*cot(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((b*cot(d*x + c) + a)^2*sqrt(e*cot(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 0.54, size = 534, normalized size = 1.85 \[ -\frac {2 b^{2} \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d e}-\frac {4 a b \sqrt {e \cot \left (d x +c \right )}}{d}+\frac {a b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{2 d}+\frac {a b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{d}-\frac {a b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{d}-\frac {e \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right ) a^{2}}{4 d \left (e^{2}\right )^{\frac {1}{4}}}+\frac {e \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right ) b^{2}}{4 d \left (e^{2}\right )^{\frac {1}{4}}}+\frac {e \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right ) a^{2}}{2 d \left (e^{2}\right )^{\frac {1}{4}}}-\frac {e \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right ) b^{2}}{2 d \left (e^{2}\right )^{\frac {1}{4}}}-\frac {e \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right ) a^{2}}{2 d \left (e^{2}\right )^{\frac {1}{4}}}+\frac {e \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right ) b^{2}}{2 d \left (e^{2}\right )^{\frac {1}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(1/2)*(a+b*cot(d*x+c))^2,x)

[Out]

-2/3*b^2*(e*cot(d*x+c))^(3/2)/d/e-4*a*b*(e*cot(d*x+c))^(1/2)/d+1/2/d*a*b*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+
(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(
e^2)^(1/2)))+1/d*a*b*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/d*a*b*(e^2)^(1/4
)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/4*e/d*2^(1/2)/(e^2)^(1/4)*ln((e*cot(d*x+c)-(e^
2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2
)^(1/2)))*a^2+1/4*e/d*2^(1/2)/(e^2)^(1/4)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2
))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))*b^2+1/2*e/d*2^(1/2)/(e^2)^(1/4)*arctan
(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*a^2-1/2*e/d*2^(1/2)/(e^2)^(1/4)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*c
ot(d*x+c))^(1/2)+1)*b^2-1/2*e/d*2^(1/2)/(e^2)^(1/4)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*a^2+1/2
*e/d*2^(1/2)/(e^2)^(1/4)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*b^2

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 257, normalized size = 0.89 \[ -\frac {{\left (\frac {6 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} + 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} + \frac {6 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} - 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} - \frac {3 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}} + \frac {3 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (-\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}} + \frac {8 \, {\left (6 \, a b e \sqrt {\frac {e}{\tan \left (d x + c\right )}} + b^{2} \left (\frac {e}{\tan \left (d x + c\right )}\right )^{\frac {3}{2}}\right )}}{e^{2}}\right )} e}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)*(a+b*cot(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/12*(6*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(e) + 2*sqrt(e/tan(d*x + c)))/sqrt(e))/sq
rt(e) + 6*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(e) - 2*sqrt(e/tan(d*x + c)))/sqrt(e))/
sqrt(e) - 3*sqrt(2)*(a^2 + 2*a*b - b^2)*log(sqrt(2)*sqrt(e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/sqrt(e)
 + 3*sqrt(2)*(a^2 + 2*a*b - b^2)*log(-sqrt(2)*sqrt(e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/sqrt(e) + 8*(
6*a*b*e*sqrt(e/tan(d*x + c)) + b^2*(e/tan(d*x + c))^(3/2))/e^2)*e/d

________________________________________________________________________________________

mupad [B]  time = 1.21, size = 1157, normalized size = 4.02 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(c + d*x))^(1/2)*(a + b*cot(c + d*x))^2,x)

[Out]

atan((a^4*e^4*(e*cot(c + d*x))^(1/2)*((a^4*e*1i)/(4*d^2) + (b^4*e*1i)/(4*d^2) - (a^2*b^2*e*3i)/(2*d^2) - (a*b^
3*e)/d^2 + (a^3*b*e)/d^2)^(1/2)*32i)/((16*b^6*e^5)/d - (16*a^6*e^5)/d + (a*b^5*e^5*32i)/d + (a^5*b*e^5*32i)/d
- (112*a^2*b^4*e^5)/d - (a^3*b^3*e^5*192i)/d + (112*a^4*b^2*e^5)/d) + (b^4*e^4*(e*cot(c + d*x))^(1/2)*((a^4*e*
1i)/(4*d^2) + (b^4*e*1i)/(4*d^2) - (a^2*b^2*e*3i)/(2*d^2) - (a*b^3*e)/d^2 + (a^3*b*e)/d^2)^(1/2)*32i)/((16*b^6
*e^5)/d - (16*a^6*e^5)/d + (a*b^5*e^5*32i)/d + (a^5*b*e^5*32i)/d - (112*a^2*b^4*e^5)/d - (a^3*b^3*e^5*192i)/d
+ (112*a^4*b^2*e^5)/d) - (a^2*b^2*e^4*(e*cot(c + d*x))^(1/2)*((a^4*e*1i)/(4*d^2) + (b^4*e*1i)/(4*d^2) - (a^2*b
^2*e*3i)/(2*d^2) - (a*b^3*e)/d^2 + (a^3*b*e)/d^2)^(1/2)*192i)/((16*b^6*e^5)/d - (16*a^6*e^5)/d + (a*b^5*e^5*32
i)/d + (a^5*b*e^5*32i)/d - (112*a^2*b^4*e^5)/d - (a^3*b^3*e^5*192i)/d + (112*a^4*b^2*e^5)/d))*((a^4*e*1i + b^4
*e*1i - a^2*b^2*e*6i - 4*a*b^3*e + 4*a^3*b*e)/(4*d^2))^(1/2)*2i - atan((a^4*e^4*(e*cot(c + d*x))^(1/2)*((a^2*b
^2*e*3i)/(2*d^2) - (b^4*e*1i)/(4*d^2) - (a^4*e*1i)/(4*d^2) - (a*b^3*e)/d^2 + (a^3*b*e)/d^2)^(1/2)*32i)/((16*a^
6*e^5)/d - (16*b^6*e^5)/d + (a*b^5*e^5*32i)/d + (a^5*b*e^5*32i)/d + (112*a^2*b^4*e^5)/d - (a^3*b^3*e^5*192i)/d
 - (112*a^4*b^2*e^5)/d) + (b^4*e^4*(e*cot(c + d*x))^(1/2)*((a^2*b^2*e*3i)/(2*d^2) - (b^4*e*1i)/(4*d^2) - (a^4*
e*1i)/(4*d^2) - (a*b^3*e)/d^2 + (a^3*b*e)/d^2)^(1/2)*32i)/((16*a^6*e^5)/d - (16*b^6*e^5)/d + (a*b^5*e^5*32i)/d
 + (a^5*b*e^5*32i)/d + (112*a^2*b^4*e^5)/d - (a^3*b^3*e^5*192i)/d - (112*a^4*b^2*e^5)/d) - (a^2*b^2*e^4*(e*cot
(c + d*x))^(1/2)*((a^2*b^2*e*3i)/(2*d^2) - (b^4*e*1i)/(4*d^2) - (a^4*e*1i)/(4*d^2) - (a*b^3*e)/d^2 + (a^3*b*e)
/d^2)^(1/2)*192i)/((16*a^6*e^5)/d - (16*b^6*e^5)/d + (a*b^5*e^5*32i)/d + (a^5*b*e^5*32i)/d + (112*a^2*b^4*e^5)
/d - (a^3*b^3*e^5*192i)/d - (112*a^4*b^2*e^5)/d))*(-(a^4*e*1i + b^4*e*1i - a^2*b^2*e*6i + 4*a*b^3*e - 4*a^3*b*
e)/(4*d^2))^(1/2)*2i - (2*b^2*(e*cot(c + d*x))^(3/2))/(3*d*e) - (4*a*b*(e*cot(c + d*x))^(1/2))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {e \cot {\left (c + d x \right )}} \left (a + b \cot {\left (c + d x \right )}\right )^{2}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(1/2)*(a+b*cot(d*x+c))**2,x)

[Out]

Integral(sqrt(e*cot(c + d*x))*(a + b*cot(c + d*x))**2, x)

________________________________________________________________________________________